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Abstract. In this paper, we are motivated by two important applica-
tions: entropy-regularized optimal transport problem and road or IP traf-
fic demand matrix estimation by entropy model. Both of them include
solving a special type of optimization problem with linear equality con-
straints and objective given as a sum of an entropy regularizer and a lin-
ear function. It is known that the state-of-the-art solvers for this problem,
which are based on Sinkhorn’s method (also known as RSA or balancing
method), can fail to work, when the entropy-regularization parameter
is small. We consider the above optimization problem as a particular
instance of a general strongly convex optimization problem with linear
constraints. We propose a new algorithm to solve this general class of
problems. Our approach is based on the transition to the dual problem.
First, we introduce a new accelerated gradient method with adaptive
choice of gradient’s Lipschitz constant. Then, we apply this method to
the dual problem and show, how to reconstruct an approximate solution
to the primal problem with provable convergence rate. We prove the rate
O(1/k2), k being the iteration counter, both for the absolute value of the
primal objective residual and constraints infeasibility. Our method has
similar to Sinkhorn’s method complexity of each iteration, but is faster
and more stable numerically, when the regularization parameter is small.
We illustrate the advantage of our method by numerical experiments for
the two mentioned applications. We show that there exists a thresh-
old, such that, when the regularization parameter is smaller than this
threshold, our method outperforms the Sinkhorn’s method in terms of
computation time.
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1 Introduction

The main problem, we consider, is convex optimization problem of the following
form

(P1) min
x∈Q⊆E

{f(x) : A1x = b1, A2x − b2 ∈ −K} ,

where E is a finite-dimensional real vector space, Q is a simple closed convex
set, A1, A2 are given linear operators from E to some finite-dimensional real
vector spaces H1 and H2 respectively, b1 ∈ H1, b2 ∈ H2 are given, K ⊆ H2

is some cone, f(x) is a γ-strongly convex function on Q with respect to some
chosen norm ‖ · ‖E on E. The last means that, for any x, y ∈ Q, f(y) ≥ f(x) +
〈∇f(x), y − x〉 + γ

2 ‖x − y‖2E , where ∇f(x) is any subgradient of f(x) at x and
hence is an element of the dual space E∗. Also we denote the value of a linear
function λ ∈ E∗ at x ∈ E by 〈λ, x〉.

We are motivated to consider the described class of problems by two partic-
ular applications. The first one comes from transportation research and consists
in recovering a matrix of traffic demands between city districts from the infor-
mation on population and workplace capacities of each district. As it is shown in
[23], a natural model of districts’ population dynamics leads to an entropy-linear
programming optimization (see (9) below for the precise formulation) problem
for the traffic demand matrix estimation. In this case, the objective function in
(P1) is a sum of an entropy function and a linear function. It is important to
note also that the entropy function is multiplied by a regularization parameter
γ and the model is close to reality, when the regularization parameter is small.
The same approach is used in IP traffic matrix estimation [54]. Close problems
arise also in more complicated congestion traffic modelling [4].

The second application is the calculation of regularized optimal transport
(ROT) between two probability measures introduced in [12]. The idea is to reg-
ularize the objective function in the classical optimal transport linear program-
ming problem [31] by entropy of the transportation plan. This leads to the same
type of problem with a regularization parameter as in the traffic demands matrix
estimation. For the detailed problem statement, see (9). As it is argued in [13],
for the case of discretization of continuous probability measures, entropy regu-
larization allows to obtain a better approximation for the optimal transportation
plan than the solution of the original linear programming problem. At the same
time, the regularization parameter γ should be small. Otherwise, the solution
of the regularized optimal transport problem will be a bad approximation for
the original optimal transport problem. To sum up, in both applications, it is
important to solve regularized problems with small regularization parameter.
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The problem statement (P1) covers many other applications besides men-
tioned above. For example, general entropy-linear programming (ELP) problem
[20] arises in econometrics [24], modeling in science and engineering [32]. Such
machine learning approaches as ridge regression [28] and elastic net [55] lead to
the same type of problem.

1.1 Related Work

Sinkhorn’s, RSA or Balancing Type Methods. Special types of Problem
(P1), such as traffic matrix estimation and regularized optimal transport, have
efficient matrix-scaling-based solvers such as balancing algorithm, [8], Sinkhorn’s
method, [12,46], RAS algorithm [30]. Strong points of these algorithms are fast
convergence in practice and easy parallel implementation. At the same time,
these algorithms are suitable only for Problem (P1) with special type of linear
equality constraints. A generalization for a problem with a special type of linear
inequalities constraints was suggested in [6], but without convergence rate esti-
mates. Recently, [11] extended the approach of [12] for other special classes of
entropy-minimization problems.

The problem of instability of the matrix-scaling approach for problems with
small regularization parameter was addressed in [44], but the proposed tech-
niques are less suitable for parallel computations than the initial algorithm.
There is a proof of linear convergence of the Sinkhorn’s method [21], but the
theoretical bound is much worse than the rate in practice and theoretical rate is
obtained in terms of convergence in a special metric, which is hard to interpret.
The papers [2,18,27,35] analyse complexity of the Sinkhorn’s algorithm to find
an approximate solution to the regularized and non-regularized optimal trans-
port problem. In particular, they show that the regularization parameter needs
to be of the order of the desired accuracy, which can lead to the instability of
the Sinkhorn’s algorithm. An alternative matrix scaling algorithm was proposed
in [1] together with theoretical analysis, but this method seems to be hard to
implement in practice and no experimental results were reported.

In any case, all the mentioned algorithms are designed for a special instance
of Problem (P1).

First-Order Methods for Constrained Problems. We consider Problem
(P1) in large-scale setting, when the natural choice is some first-order method.
Due to the presence of linear constraints, the applicability of projected-gradient-
type methods to the primal problem is limited. Thus, the most common approach
involves construction of the dual problem and primal-dual updates during the
algorithm progress. There are many algorithms of this type like ADMM [7,25]
and other primal-dual methods [5,9,19], see the extensive review in [48]. As it
is pointed in [48], these methods have the following drawbacks. They need the
tractability assumption of the proximal operator for the function f and some
additional assumptions. These methods don’t have appropriate convergence rate
characterization: if any, the rates are non-optimal and are either only for the dual
problem or for some weighted sum of primal objective residual and linear con-
straints infeasibility. In [48], the authors themselves develop a good alternative,
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based only on the assumption of proximal tractability of the function f , but
only for problems with linear equality constraints. This approach was further
developed in [53] for more general types of constraints. The key feature of the
algorithm developed there is its adaptivity to the unknown level of smoothness in
the dual problem. Nevertheless, the provided stopping criterion, which is based
on the prescribed number of iterations, requires to know all the smoothness
parameters. Further, in [49], the authors propose algorithms with optimal rates
of convergence for a more general class of problems, but, for the case of strongly
convex f , they assume that it is strongly convex with respect to a Euclidean-type
norm. Thus, their approach is not applicable to entropy minimization problems,
which are our main focus.

An advanced ADMM with provable convergence rate with appropriate con-
vergence characterization was proposed in [41], but only for the case of equality
constraints and Lipschitz-smooth f , which does not cover the case of entropy
minimization. A general primal-dual framework for unconstrained problems was
proposed in [14], but it is not applicable in our setting. An adaptive to unknown
Lipschitz constant algorithm for primal-dual problems was developed in [36],
but the authors work with a different from our problem statement and the case
of strongly convex objective is considered only in Euclidean setting, which also
does not cover the case of entropy minimization.

Several recent algorithms [10,17,22,26,34,39,42] are based on the application
of accelerated gradient method [37,38] to the dual problem and have optimal
rates. At the same time, these works do not consider general types of constraints
as in Problem (P1). Also the proposed algorithms use, as an input parameter,
an estimate of the Lipschitz constant of the gradient in the dual problem, which
can be very pessimistic and lead to slow convergence.

The idea of primal-dual accelerated gradient methods turned out to be quite
fruitful in the context of distributed decentralized optimization and it application
to Wasserstein baeycenter problem [15,16,29,33,43,50,51].

1.2 Contributions

1. In contrast to the existing methods for constrained problems in [3,5,7,9,10,
22,25,34,36,42,48,49,53], we propose an algorithm simultaneously for Prob-
lem (P1) with general linear equality and cone constraints; with optimal rate
of convergence in terms of both primal objective residual and constraints
infeasibility; with adaptivity to the Lipschitz constant of the objective’s gra-
dient; with online stopping criterion, which does not require the knowledge
of this Lipschitz constant; with ability to work with entropy function as f .
The main difference with [18] is that here we consider more general cone
constraints and consider not only regularized optimal transport problems as
application.

2. In contrast to existing Sinkhorn’s-algorithm-based algorithms for solving
entropy-regularized optimal transport problems [1,2,6,8,12,30,44,46], we
provide an algorithm simultaneously with provable convergence rate, easy
implementability in practice and higher stability, when the regularization
parameter is small.
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3. In the experiments, we show that our algorithm is better than the Sinkhorn’s
method in situations of small regularization parameter in the primal problem,
which means that the dual problem becomes less smooth problem.

The rest of the paper is organized as follows. In Sect. 2, we introduce nota-
tion, definition of approximate solution to Problem (P1), main assumptions, and
particular examples of (P1) in applications. Section 3 is devoted to primal-dual
algorithm for Problem (P1) and its convergence analysis. Finally, in Sect. 4, we
present the results of the numerical experiments for regularized optimal trans-
port and traffic matrix estimation problems.

2 Preliminaries

For any finite-dimensional real vector space E, we denote by E∗ its dual. We
denote the value of a linear function λ ∈ E∗ at x ∈ E by 〈λ, x〉. Let ‖ ·‖E denote
some norm on E and ‖ · ‖E,∗ denote the norm on E∗ which is dual to ‖ · ‖E , i.e.
‖λ‖E,∗ = max‖x‖E≤1〈λ, x〉. In the special case, when E is a Euclidean space, we
denote the standard Euclidean norm by ‖ · ‖2. Note that, in this case, the dual
norm is also Euclidean. For a cone K ⊆ E, the dual cone K∗ ⊆ E∗ is defined as
K∗ := {λ ∈ E∗ : 〈λ, x〉 ≥ 0 ∀x ∈ K}. By ∂f(x) we denote the subdifferential
of a function f(x) at a point x. Let E1, E2 be two finite-dimensional real vector
spaces. For a linear operator A : E1 → E2, we define its norm as follows

‖A‖E1→E2 = max
x∈E1,u∈E∗

2

{〈u,Ax〉 : ‖x‖E1 = 1, ‖u‖E2,∗ = 1}.

For a linear operator A : E1 → E2, we define the adjoint operator AT : E∗
2 → E∗

1

in the following way 〈u,Ax〉 = 〈AT u, x〉, ∀u ∈ E∗
2 , x ∈ E1. We say that

a function f : E → R has a L-Lipschitz-continuous gradient if it is differ-
entiable and its gradient satisfies Lipschitz condition ‖∇f(x) − ∇f(y)‖E,∗ ≤
L‖x − y‖E , ∀x, y ∈ E. Note that, from this inequality, it follows that

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
‖x − y‖2E , ∀x, y ∈ E. (1)

Also, for any t ∈ R, we denote by �t the smallest integer greater than or equal
to t.

We characterize the quality of an approximate solution to Problem (P1) by
three quantities εf , εeq, εin > 0.

Definition 1. We say that a point x̂ is an (εf , εeq, εin)-solution to Problem (P1)
iff the following inequalities hold

|f(x̂) − Opt[P1]| ≤ εf , ‖A1x̂ − b1‖2 ≤ εeq, ρ(A2x̂ − b2,−K) ≤ εin. (2)

Here Opt[P1] denotes the optimal function value for Problem (P1),

ρ(A2x̂ − b2,−K) := max
λ(2)∈K∗,‖λ(2)‖2≤1

〈λ(2), A2x̂ − b2〉.
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Note that the last inequality in (2) is a natural generalization of linear constraints
infeasibility measure ‖(A2xk − b2)+‖2 for the case K = R

n
+. Here the vector v+

denotes the vector with components [v+]i = (vi)+ = max{vi, 0}.
The Lagrange dual problem to Problem (P1) is

(D1) max
λ∈Λ

{
−〈λ(1), b1〉 − 〈λ(2), b2〉 + min

x∈Q

(
f(x) + 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}
.

Here we denote Λ = {λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 : λ(2) ∈ K∗}. It is convenient
to rewrite Problem (D1) in the equivalent form of a minimization problem

(P2) min
λ∈Λ

{
〈λ(1), b1〉 + 〈λ(2), b2〉 + max

x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}
.

It is obvious that
Opt[D1] = −Opt[P2], (3)

where Opt[D1], Opt[P2] are the optimal function value in Problem (D1) and
Problem (P2) respectively. The following inequality follows from the weak duality

Opt[P1] ≥ Opt[D1]. (4)

We denote
ϕ(λ) = ϕ(λ(1), λ(2)) = 〈λ(1), b1〉 + 〈λ(2), b2〉
+ max

x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
.

(5)

Since f is strongly convex, ϕ(λ) is a smooth function and its gradient is equal
to (see e.g. [38])

∇ϕ(λ) =

(
b1 − A1x(λ)
b2 − A2x(λ)

)
, (6)

where x(λ) is the unique solution of the strongly-convex problem

max
x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
. (7)

Note that ∇ϕ(λ) is Lipschitz-continuous (see e.g. [38]) with constant

L ≤ 1
γ

(‖A1‖2E→H1
+ ‖A2‖2E→H2

)
.

Previous works [10,22,34,42] rely on this quantity in the algorithm and use it
to define the stepsize of the proposed algorithm. The drawback of this approach
is that the above bound for the Lipschitz constant can be way too pessimistic.
In this work, we propose an adaptive method, which has the same complexity
bound, but is faster in practice due to the use of a “local” estimate for L in the
stepsize definition.
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We assume that the dual problem (D1) has a solution λ∗ = (λ∗(1), λ∗(2))T

and there exist some R1, R2 > 0 such that

‖λ∗(1)‖2 ≤ R1 < +∞, ‖λ∗(2)‖2 ≤ R2 < +∞. (8)

It is worth noting that the quantities R1, R2 will be used only in the convergence
analysis, but not in the algorithm itself.

To motivate the considered problem we describe two particular problems
which can be written in the form of Problem (P1).

Traffic demand matrix estimation, [52], and Regularized optimal
transport problem, [12].

min
X∈R

p×p
+

⎧⎨
⎩γ

p∑
i,j=1

xij ln xij +
p∑

i,j=1

cijxij : Xe = μ,XT e = ν

⎫⎬
⎭ , (9)

where e ∈ R
p is the vector of all ones, μ, ν ∈ Sp(1) := {x ∈ R

p :
∑p

i=1 xi =
1, xi ≥ 0, i = 1, ..., p}, cij ≥ 0, i, j = 1, ..., p are given, γ > 0 is the regularization
parameter, XT is the transpose matrix of X, xij is the element of the matrix X
in the i-th row and the j-th column. This problem with small value of γ is our
primary focus in this paper.

General entropy-linear programming problem, [20].

min
x∈Sn(1)

{
n∑

i=1

xi ln (xi/ξi) : Ax = b

}

for some given ξ ∈ R
n
++ = {x ∈ R

n : xi > 0, i = 1, ..., n}.

3 Primal-Dual Algorithm

In this section, we return to the primal-dual pair of problems (P1)–(D1). We
apply Algorithm 1 in the supplementary of [18] to Problem (P2) and incorporate
in the algorithm a procedure, which allows to reconstruct also an approximate
solution of Problem (P1). The main novelty of this paper is the primal-dual
analysis of this algorithm in the presence of inequality constraints. We choose
Euclidean proximal setup, which means that we introduce euclidean norm ‖ · ‖2
in the space of vectors λ and choose the prox-function d(λ) = 1

2‖λ‖22. Then, we
have V [ζ](λ) = 1

2‖λ − ζ‖22.
Our primal-dual algorithm for Problem (P1) is listed below as Algorithm 1.

Note that, in this case, the set Λ has a special structure

Λ = {λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 : λ(2) ∈ K∗}
as well as ϕ(λ) and ∇ϕ(λ) are defined in (5) and (6) respectively. Thus, the step
(10) of the algorithm can be written explicitly.

ζ
(1)
k+1 = ζ

(1)
k + αk+1(A1x(λk+1) − b1), ζ

(2)
k+1 = ΠK∗

(
ζ
(2)
k + αk+1(A2x(λk+1) − b2)

)
,

where ΠK∗(·) denotes euclidean projection on the cone K∗.
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It is worth noting that, besides solution of the problem (7), the algorithm
uses only matrix-vector multiplications and vector operations, which made it
amenable for parallel implementation.

Algorithm 1. Primal-Dual Adaptive Similar Triangles Method (PDASTM)
Require: starting point λ0 = 0, initial guess L0 > 0, accuracy ε̃f , ε̃eq, ε̃in > 0.
1: Set k = 0, C0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: repeat
3: Set Mk = Lk/2.
4: repeat
5: Set Mk = 2Mk, find αk+1 as the largest root of the equation Ck+1 := Ck +

αk+1 = Mkα2
k+1.

6: Calculate λk+1 = (λ
(1)
k+1, λ

(2)
k+1)

T = (αk+1ζk + Ckηk)/Ck+1.
7: Calculate

ζk+1 = (ζ
(1)
k+1, ζ

(2)
k+1)

T
= arg min

λ∈Λ

{
1

2
‖λ − ζk‖2

2 + αk+1(ϕ(λk+1) + 〈∇ϕ(λk+1), λ − λk+1〉)
}

.

(10)

8: Calculate ηk+1 = (η
(1)
k+1, η

(2)
k+1)

T = (αk+1ζk+1 + Ckηk)/Ck+1.
9: until

ϕ(ηk+1) ≤ ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉 +
Mk

2
‖ηk+1 − λk+1‖2

2. (11)

10: Set x̂k+1 = 1
Ck+1

∑k+1
i=0 αix(λi) = (αk+1x(λk+1) + Ckx̂k)/Ck+1.

11: Set Lk+1 = Mk/2, k = k + 1.
12: until |f(x̂k+1) + ϕ(ηk+1)| ≤ ε̃f , ‖A1x̂k+1 − b1‖2 ≤ ε̃eq, ρ(A2x̂k+1 − b2, −K) ≤ ε̃in.
Ensure: The points x̂k+1, ηk+1.

Theorem 1. Let the main assumptions hold. Then Algorithm1 will stop not
later than k equals to

max

⎧⎨
⎩

⌈√
16L(R2

1 + R2
2)

ε̃f

⌉
,

⌈√
16L(R2

1 + R2
2)

R1ε̃eq

⌉
,

⎡
⎢⎢⎢

√
16L(R2

1 + R2
2)

R2ε̃in

⎤
⎥⎥⎥

⎫⎬
⎭ .

Moreover, no later than k equals to

max

⎧⎨
⎩

⌈√
32L(R2

1 + R2
2)

εf

⌉
,

⌈√
16L(R2

1 + R2
2)

R1εeq

⌉
,

⎡
⎢⎢⎢

√
16L(R2

1 + R2
2)

R2εin

⎤
⎥⎥⎥

⎫⎬
⎭ ,

the point x̂k+1 generated by Algorithm1 is an approximate solution to Problem

(P1) in the sense of (2) and ‖x̂k+1 − x∗‖ ≤
√

2εf

γ , where x∗ is a solution to
Problem (P1).
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Remark 1. Note that the result of Theorem 1 can be reformulated as follows.
For any k ≥ 1, the output (x̂k, ηk) of Algorithm 1 satisfies

−16L(R2
1 + R2

2)
(k + 1)2

≤ f(x̂k) − Opt[P1] ≤ f(x̂k) + ϕ(ηk) ≤ 16L(R2
1 + R2

2)
(k + 1)2

,

‖A1x̂k − b1‖2 ≤ 16L(R2
1 + R2

2)
R1(k + 1)2

, ρ(A2x̂k − b2,−K) ≤ 16L(R2
1 + R2

2)
R2(k + 1)2

,

‖x̂k − x∗‖E ≤ 8
k + 1

√
L(R2

1 + R2
2)

γ
.

4 Numerical Experiments

In this section, we focus on the problem (9), which is motivated by important
applications to traffic demand matrix estimation, [52], and regularized optimal
transport calculation, [12]. We provide the results of our numerical experiments,
which were performed on a PC with processor Intel Core i5-2410 2.3 GHz and
4 GB of RAM using pure Python 2.7 (without C code) under managing OS
Ubuntu 14.04 (64-bits). Numpy.float128 data type with precision 1e−18 and
with max element ≈ 1.19e+4932 was used. No parallel computations were used.
We compare the performance of our algorithm with Sinkhorn’s-method-based
approach of [12], which is the state-of-the art method for problem (9). We use
two types of cost matrix C and three types of vectors μ and ν.

Cost Matrix C. The first type of the cost matrix C is usually used in optimal
transport problems and corresponds to 2-Wasserstein distance. Assume that we
need to calculate this distance between two discrete measures μ, ν with finite
support of size p. Then, the element cij of the matrix C is equal to Euclidean
distance between the i-th point in the support of the measure μ and j-th point
in the support of the measure ν. We will refer to this choice of the cost matrix
as Euclidean cost. The second type the cost matrix C comes from traffic matrix
estimation problem. Let’s consider a road network of Manhattan type, i.e. dis-
tricts present a m×m grid. We build a m2 by m2 matrix D of pairwise Euclidian
distances processing the grid rows one by one and calculating euclidean distances
from the current grid element to all the others elements of the grid. Then, as it
suggested in [45], we form the cost matrix C as C = exp(−0.065D), where the
exponent is taken elementwise. We will refer to this choice of the cost matrix as
Exp-Euclidean cost.

To set a natural scale for the regularization parameter γ, we normalize in
each case the matrix C dividing all its elements by the average of all elements.

Vectors μ and ν. The first type of vectors μ and ν is normalized uniform random.
Each element of each vector is taken independently from the uniform distribution
on [0, 1] and then each vector is normalized so that each sums to 1, i.e.
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The second type of vectors is random images. The first p/2 elements of μ
are normalized uniform random and the second p/2 elements are zero. For ν
the situation is the opposite, i.e. the first p/2 elements are zero, and the second
p/2 elements are normalized uniform random. In our preliminary experiments
we found that the methods behave strange on vectors representing pictures from
MNIST dataset. We supposed that the reason is that these vectors have many
zero elements and decided to include the described random images to the exper-
iments setting. Finally, the third type are vectors of intensities of images of
handwritten digits from MNIST dataset. The size of each image is 28 by 28
pixels. Each image is converted to gray scale from 0 to 1 where 0 corresponds to
black color and 1 corresponds to white, then each image is reshaped to a vector
of length 784. In our experiments, we normalize these vectors to sum to 1.

Accuracy. We slightly redefine the accuracy of the solution and use relative
accuracy with respect to the starting point, i.e.

ε̃f = [Accuracy] · |f(x(λ0)) + ϕ(η0)|, ε̃eq = [Accuracy] · ‖A1x(λ0) − b1‖2,
where we used the fact that λ0 = η0 = 0 and there are no cone constraints in (9).

Adaptive vs Non-adaptive Algorithm. First, we show that the adaptivity
of our algorithm with respect to the Lipschitz constant of the gradient of ϕ
leads to faster convergence in practice. For this purpose, we use normalized
uniform random vectors μ and ν and both types of cost matrix C. We compare
our new Algorithm 1 with non-adaptive Similar Triangles Method (STM), which
has cheaper iteration than the existing non-adaptive methods [10,22,34,42]. We
choose m = 10, and, hence, p = 100, Accuracy is 0.05. For the Exp-Euclidean
cost matrix C, we use γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and, for Euclidean cost matrix
C, we use γ ∈ {0.02, 0.1, 0.2, 0.3, 0.4, 0.5}. The results are shown in Fig. 1. In
both cases our new Algorithm 1 is much faster than the STM. This effect was
observed for other parameter values, so, in the following experiments, we consider
PDASTM.

Fig. 1. The perfomance of PDASTM vs STM, Accuracy 0.05, Exp-Euclidean C (left)
and Euclidean C (right).

Warm Start. During our experiments on the images from MNIST dataset
PDASTM worked worse than on the normalized uniform random vectors.
Possible reason is the large number of zero elements in the former vectors
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(a lot of black pixels). So we decided to test the performance of the algorithms
on the random images vectors μ and ν. Also we decided to apply the idea
of warm start to force PDASTM to converge faster. As we know, Sinkhorn’s
method works very fast when γ is relatively large. Thus, we use it in this
regime to find a good starting point for the PDASTM for the problem with
small γ. Notably, the running time of Sinkhorn’s method is small in compar-
ison with time of ASTM running. We test the performance of PDASTM ver-
sus PDASTM with warm start on problems with Exp-Euclidean matrix C and
γ ∈ {0.001, 0.003, 0.005, 0.008, 0.01} and on problems with Euclidean matrix C
and γ ∈ {0.005, 0.01, 0.015, 0.02, 0.025}. The results are in Fig. 2. Other parame-
ters are stated in the figure. The experiments were run 7 times, the results were
averaged. As we can see, warm start accelerates the PDASTM. Similar results
were observed in other experiments, so, we made the final comparison between
the Sinkhorn’s method and PDASTM with warm start.

Fig. 2. The perfomance of PDASTM vs PDASTM with warm start, Accuracy 0.05,
Exp-Euclidean C (left) and Euclidean C (right).

4.1 Sinkhorn’s Method vs PDASTM with Warm Start

First we compare Sinkhorn’s method and PDASTM with warm start on the
problem with normalized uniform random vectors μ, ν and Euclidean cost matrix
C with different values of p ∈ {100, 196, 289, 400}, Accuracy ∈ {0.01, 0.05, 0.1},
and γ ∈ [0.005; 0.025]. On each graph we point the value of γ used for generating
a starting point for PDASTM with warm start by Sinkhorn’s method. Each
experiments was run 5 times and then the results were averaged. The results are
shown on the Figs. 3, 4.

For the Exp-Euclidean cost matrix C, we performed the same experiments.
For the space reasons, we provide the results on the Fig. 5 only for Accuracy
0.05. The results for other Accuracy values were similar.

In another series of experiments we compare the performance of PDASTM
with warm start and Sinkhorn’s method on the problem with images from
MNIST dataset and Euclidean cost matrix C. We run both algorithms for the
same set of γ values for 5 pairs of images. The results are aggregated by γ
and the performance is averaged for each γ. We take three values of Accuracy,
{0.01, 0.05, 0.1}. The results are shown on the Fig. 6.
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Fig. 3. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.05, Euclidean cost matrix C.

Fig. 4. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.01, Euclidean cost matrix C.
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Fig. 5. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.05, Exp-Euclidean cost matrix C.

Fig. 6. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Euclidean
cost matrix C, MNIST dataset.
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As we can see on all graphs, for small values of γ, namely, smaller than some
threshold γ0, our method outperforms the state-of-the-art Sinkhorn’s method.
Note that, from [38], it follows that, for very small values of γ, less than some
threshold γ∗ = ε

4 ln p , a good approximation of the solution to the problem (9)
can be obtained by solution of the linear programming problem corresponding
to γ = 0. We point these thresholds γ∗ on the figures above. It should be noted
that the threshold γ0 is larger than γ∗. This means that it is better to use our
method, but not some method for linear programing problems.

Finally, we investigate the dependence of running time of PDASTM with
warm start on the problem dimension p. As we can see from the Fig. 7, the depen-
dence is close to quadratic, which was expected from the theoretical bounds. Also
this dependence is close to that of the Sinkhorn’s method.

Fig. 7. Dependence of running time from the problem dimension p.

Conclusion

In this article, we propose a new adaptive accelerated gradient method for con-
vex optimization problems and prove its convergence rate. We apply this method
to a class of linearly constrained problems and show, how an approximate solu-
tion can be reconstructed. In the experiments, we consider two particular applied
problems, namely, regularized optimal transport problem and traffic matrix esti-
mation problem. The results of the experiments show that, in the regime of
small regularization parameter, our algorithm outperforms the state-of-the-art
Sinkhorn’s-method-based approach. It would be interesting to extend the adap-
tive primal-dual methods for the stochastic setting [40] and for problems with
inexact model of the objective [47].
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